On optimality of the Benjamini–Hochberg procedure for the false discovery rate

نویسندگان

  • Wenge Guo
  • M. Bhaskara Rao
چکیده

The Benjamini–Hochberg step-up procedure controls the false discovery rate (FDR) provided the test statistics have a certain positive regression dependency. We show that this procedure controls the FDR under a weaker property and is optimal in the sense that its critical constants are uniformly greater than those of any step-up procedure with the FDR controlling property. c © 2008 Elsevier B.V. All rights reserved. MSC: 62J15; 62G30

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal weighting for false discovery rate control

How to weigh the Benjamini-Hochberg procedure? In the context of multiple hypothesis testing, we propose a new step-wise procedure that controls the false discovery rate (FDR) and we prove it to be more powerful than any weighted Benjamini-Hochberg procedure. Both finitesample and asymptotic results are presented. Moreover, we illustrate good performance of our procedure in simulations and a ge...

متن کامل

On Signal Detection Using the Benjamini-hochberg Procedure

We investigate a multiple hypothesis test designed for detecting signals embedded in noisy observations of a sensor array. The global level of the multiple test is controlled by the false discovery rate (FDR) criterion recently suggested by Benjamini and Hochberg instead of the classical familywise error rate (FWE) criterion. In the previous study [3], the suggested procedure has shown promisin...

متن کامل

A New Proof of FDR Control Based on Forward Filtration

For multiple testing problems, Benjamini and Hochberg (1995) proposed the false discovery rate (FDR) as an alternative to the family-wise error rate (FWER). Since then, researchers have provided many proofs to control the FDR under different assumptions. Storey et al. (2004) showed that the rejection threshold of a BH step-up procedure is a stopping time with respect to the reverse filtration g...

متن کامل

Bayesian Multiple Testing under Sparsity for Polynomial-tailed Distributions

This paper considers Bayesian multiple testing under sparsity for polynomial-tailed distributions satisfying a monotone likelihood ratio property. Included in this class of distributions are the Student’s t, the Pareto, and many other distributions. We prove some general asymptotic optimality results under fixed and random thresholding. As examples of these general results, we establish the Bay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008